ARTICLE IN PRESS

Journal of Hospital Infection xxx (xxxx) xxx

ELSEVIER

Available online at www.sciencedirect.com

Journal of Hospital Infection

journal homepage: www.elsevier.com/locate/jhin

Review

Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents

G. Kampf^a,*, D. Todt^b, S. Pfaender^b, E. Steinmann^b

^a University Medicine Greifswald, Institute for Hygiene and Environmental Medicine, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany

^b Department of Molecular and Medical Virology, Ruhr University Bochum, Universitätsstrasse 50, 44801 Bochum, Germany

ARTICLE INFO

Article history: Received 31 January 2020 Accepted 31 January 2020 Available online xxx

Keywords: Coronavirus Persistence Inanimate surfaces Chemical inactivation Biocidal agents Disinfection

SUMMARY

Currently, the emergence of a novel human coronavirus, SARS-CoV-2, has become a global health concern causing severe respiratory tract infections in humans. Human-to-human transmissions have been described with incubation times between 2-10 days, facilitating its spread via droplets, contaminated hands or surfaces. We therefore reviewed the literature on all available information about the persistence of human and veterinary coronaviruses on inanimate surfaces as well as inactivation strategies with biocidal agents used for chemical disinfection, e.g. in healthcare facilities. The analysis of 22 studies reveals that human coronaviruses such as Severe Acute Respiratory Syndrome (SARS) coronavirus, Middle East Respiratory Syndrome (MERS) coronavirus or endemic human coronaviruses (HCoV) can persist on inanimate surfaces like metal, glass or plastic for up to 9 days, but can be efficiently inactivated by surface disinfection procedures with 62-71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute. Other biocidal agents such as 0.05-0.2% benzalkonium chloride or 0.02% chlorhexidine digluconate are less effective. As no specific therapies are available for SARS-CoV-2, early containment and prevention of further spread will be crucial to stop the ongoing outbreak and to control this novel infectious thread.

 $\ensuremath{\textcircled{\sc 0}}$ 2020 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

Introduction

A novel coronavirus (SARS-CoV-2) has recently emerged from China with a total of 45171 confirmed cases of pneumonia (as of February 12, 2020) [1]. Together with Severe Acute Respiratory Syndrome (SARS) coronavirus and Middle East Respiratory Syndrome (MERS) coronavirus [2], this is the third highly pathogenic human coronavirus that has emerged in the last two decades. Person-to-person transmission has been described both in hospital and family settings [3]. It is therefore of utmost importance to prevent any further spread in the public and healthcare settings. Transmission of coronaviruses from contaminated dry surfaces has been postulated including self-inoculation of mucous membranes of the nose, eyes or mouth [4,5], emphasizing the importance of a detailed understanding of coronavirus persistence on inanimate surfaces [6]. Various types of biocidal agents such as hydrogen peroxide, alcohols, sodium hypochlorite or benzalkonium chloride are used worldwide for disinfection, mainly in healthcare settings [7]. The aim of the review was therefore to summarize all available data on the persistence of all coronaviruses including emerging SARS-CoV and MERS-CoV as well as veterinary coronaviruses such as transmissible gastroenteritis virus (TGEV), mouse hepatitis virus (MHV) and canine coronavirus (CCV) on different types of

* Corresponding author. E-mail address: guenter.kampf@uni-greifswald.de (G. Kampf).

https://doi.org/10.1016/j.jhin.2020.01.022

0195-6701/© 2020 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

Please cite this article as: Kampf G et al., Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents, Journal of Hospital Infection, https://doi.org/10.1016/j.jhin.2020.01.022

2

G. Kampf et al. / Journal of Hospital Infection xxx (xxxx) xxx

inanimate surfaces and on the efficacy of commonly used biocidal agents used in surface disinfectants against coronaviruses.

Method

A Medline search has been done on January 28, 2020. The following terms were used, always in combination with "coronavirus", "TGEV", "MHV" or "CCV": survival surface (88 / 10 / 25 / 0 hits), persistence surface (47 / 1 / 32 / 0 hits), persistence hand (8 / 0 / 3 / 0 hits), survival hand (22 / 0 / 3 / 1 hits), survival skin (8 / 0 / 0 / 1 hits), persistence skin (1 / 0 / 0 / 1 hit), virucidal (23 / 3 / 3 / 1 hits), chemical inactivation (33 / 0/6/1), suspension test (18 / 0/0/0 hits) and carrier test (17 / 4 / 0 / 0 hits). Publications were included and results were extracted given they provided original data on coronaviruses on persistence (surfaces, materials) and inactivation by biocidal agents used for disinfection (suspension tests, carrier tests, fumigation studies). Data with commercial products based on various different types of biocidal agents were excluded. Reviews were not included, but screened for any information within the scope of this review.

Results

Persistence of coronavirus on inanimate surfaces

Most data were described with the endemic human coronavirus strain (HCoV-) 229E. On different types of materials it can remain infectious for from 2 hours up to 9 days. A higher temperature such as 30°C or 40°C reduced the duration of persistence of highly pathogenic MERS-CoV, TGEV and MHV. However, at 4°C persistence of TGEV and MHV can be increased to \geq 28 days. Few comparative data obtained with SARS-CoV indicate that persistence was longer with higher inocula (Table I). In addition it was shown at room temperature that HCoV-229E persists better at 50% compared to 30% relative humidity [8].

Inactivation of coronaviruses by biocidal agents in suspension tests

Ethanol (78–95%), 2-propanol (70–100%), the combination of 45% 2-propanol with 30% 1-propanol, glutardialdehyde (0.5-2.5%), formaldehyde (0.7-1%) and povidone iodine

Table I

Persistence of coronaviruses on different types of inanimate surfaces

Type of surface	Virus	Strain / isolate	Inoculum (viral titer)	Temperature	Persistence	Reference
Steel	MERS-CoV	Isolate HCoV-EMC/2012	10 ⁵	20°C	48 h	[21]
				30°C	8–24 h	
	TGEV	Unknown	10 ⁶	4°C	≥ 28 d	[22]
				20°C	3–28 d	
				40°C	4–96 h	
	MHV	Unknown	10 ⁶	4°C	\geq 28 d	[22]
				20°C	4–28 d	
				40°C	4—96 h	
	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Aluminium	HCoV	Strains 229E and OC43	5 x 10 ³	21°C	2—8 h	[24]
Metal	SARS-CoV	Strain P9	10 ⁵	RT	5 d	[25]
Wood	SARS-CoV	Strain P9	10 ⁵	RT	4 d	[25]
Paper	SARS-CoV	Strain P9	10 ⁵	RT	4–5 d	[25]
	SARS-CoV	Strain GVU6109	10 ⁶	RT	24 h	[26]
			10 ⁵		3 h	
			10 ⁴		< 5 min	
Glass	SARS-CoV	Strain P9	10 ⁵	RT	4 d	[25]
	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Plastic	SARS-CoV	Strain HKU39849	10 ⁵	22°-25°C	\leq 5 d	[27]
	MERS-CoV	Isolate HCoV-EMC/2012	10 ⁵	20°C	48 h	[21]
				30°C	8–24 h	
	SARS-CoV	Strain P9	10 ⁵	RT	4 d	[25]
	SARS-CoV	Strain FFM1	10 ⁷	RT	6–9 d	[28]
	HCoV	Strain 229E	10 ⁷	RT	2—6 d	[28]
PVC	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Silicon rubber	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Surgical glove (latex)	HCoV	Strains 229E and OC43	5 x 10 ³	21°C	\leq 8 h	[24]
Disposable gown	SARS-CoV	Strain GVU6109	10 ⁶	RT	2 d	[26]
			10 ⁵		24 h	
			10 ⁴		1 h	
Ceramic	HCoV	Strain 229E	10 ³	21°C	5 d	[23]
Teflon	HCoV	Strain 229E	10 ³	21°C	5 d	[23]

MERS = Middle East Respiratory Syndrome; HCoV = human coronavirus; TGEV = transmissible gastroenteritis virus; MHV = mouse hepatitis virus; SARS = Severe Acute Respiratory Syndrome; RT = room temperature.

Please cite this article as: Kampf G et al., Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents, Journal of Hospital Infection, https://doi.org/10.1016/j.jhin.2020.01.022